
CE 407 Final Exam Solution 12/12/19 

 

1) First we plot LN
’ and connect it to the pure solvent to locate LN as having xC = 0.1 

 

 

Next we draw the line from VN+1 through LN and extend it out past the graph.  By extending all of the tie 

lines between L0 and LN to this line we can locate min. 

Because the topmost tie line extended furthest out, that line is also the line from min to L0. Where it 

extends to the other side of the phase boundary is V1 min.





Now we will add the lines L0 to VN+1 and LN to V1 min. The intersection, M, is at xC = 0.20 and V1 min is at xC = 

0.42

 

We now want to determine the minimum flow rate of solvent solution: 

𝑉𝑁+1 𝑚𝑖𝑛
𝐿0

=
𝑥0 − 𝑥𝑀
𝑥𝑀 − 𝑦𝑁+1

=
0.24 −  0.20

0.20 −  0.04
= 0.25 

𝑉𝑁+1 𝑚𝑖𝑛 = 𝐿0 ∗ 0.25 = 500 ∗ 0.25 = 125 
𝑘𝑔

ℎ𝑟
 

Because we are using 1.5 times the minimum flow our solvent solution flow will be  

𝑽𝑵+𝟏 = 𝟏. 𝟓 ∗ 𝟏𝟐𝟓 = 𝟏𝟖𝟕. 𝟓 
𝒌𝒈

𝒉𝒓
 

This is the answer for part b. 

Now we will prepare the next graph to determine points on the operating line: 

First determine the new mixing point, M: 

𝑥𝑀 =
𝐹 ∗ 𝑥𝐹 + 𝑆 ∗ 𝑦𝑆

𝐹 + 𝑆
=
500 (0.24) + 187.5 (0.04)

500 + 187.5
= 0.185 



𝑥𝑀,𝐵 =
𝐹 ∗ 𝑥𝐹,𝐵 + 𝑆 ∗ 𝑦𝑆,𝐵

𝐹 + 𝑆
=
500 (0.0) + 187.5 (0.90)

500 + 187.5
= 0.245 

Plot this point on the line from L0 to VN+1 and extend line from LN through M until it contacts the solvent 

rich side of the phase boundary. The point V1 is at xC = 0.33. 

 

Now draw lines LN to VN+1 and V1 to L0, extend to outside the graph to locate . Then draw a series of 

lines to locate points for the operatine lines. (The xC value on the raffinate side of the phase boundary is 

x and the xC value on the extract side of the phase boundary is y.) 



 



Operating Line Points 

x y 

0.26 0.33 

0.24 0.30 

0.215 0.26 

0.18 0.20 

0.16 0.16 

0.125 0.10 

0.10 0.06 
 

The points for the equilibrium curve by taking xc for the raffinate as x and xc for the extract as y (from 

the equilibirum data provided)  for equilibrium curve points. 

Equilibrium CurvePoints 

x y 

0.30 0.42 

0.24 0.39 

0.18 0.35 

0.12 0.30 

0.08 0.26 

0.04 0.29 

 

2 stages are required.  

 



2) The first step is to convert the mass flow given into molar flows: 

1000 
𝑘𝑔 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
⁄ ∗ 0.45 

𝑘𝑔 𝐸𝐵
𝑘𝑔 𝑡𝑜𝑡𝑎𝑙⁄ ∗

𝑚𝑜𝑙 𝐸𝐵

106.17 𝑔 𝐸𝐵
∗ 
1000 𝑔

𝑘𝑔
= 4238.5 𝑚𝑜𝑙 𝐸𝐵 ℎ𝑟⁄   

 

1000 
𝑘𝑔 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
⁄ ∗ 0.55 

𝑘𝑔 𝑇
𝑘𝑔 𝑡𝑜𝑡𝑎𝑙⁄ ∗

𝑚𝑜𝑙 𝑇

92.14 𝑔 𝑇
∗  
1000 𝑔

𝑘𝑔
= 5969.2 𝑚𝑜𝑙 𝑇 ℎ𝑟⁄  

 

𝑥𝐹 =
5969.2 𝑚𝑜𝑙 𝑇

5969.2 𝑚𝑜𝑙 𝑇 + 4238.5 𝑚𝑜𝑙 𝐸𝐵
= 0.58 

 

 

 

The next step is to determine the minimum reflux ratio: 

 



By drawing a line from xD to the intersection of the feed line and the equilibrium curve, the intercept can 

be read: 

𝑥𝐷
𝑅𝑚𝑖𝑛 + 1

= 0.4 

This can be solved for xD = 0.98 to give 𝑹𝒎𝒊𝒏 = 𝟏. 𝟒𝟓 

Problem statement says to use 𝑹 = 𝟐 ∗  𝑹𝒎𝒊𝒏 = 𝟐 ∗  𝟏. 𝟒𝟓 = 𝟐. 𝟗𝟎 

The new intercept is: 

𝒙𝑫
𝑹+ 𝟏

=
𝟎. 𝟗𝟖

𝟐. 𝟗𝟎 + 𝟏
= 𝟎. 𝟐𝟓𝟏 

 

The R operating line can be drawn from the intercept to (xD, xD) and the S operating line can be drawn 

from (xB, xB) to the intersection of the feed line and the R operating line. The effective equilibrium curve 



is then estimated by marking points 75% of the way from the appropriate operating line and the 

equilibrium curve. 

 

The McCabe-Thiele steps are drawn. Note that the first step is not a stage but represents the Partial 

Condenser. 

There are 17 stages plus the Reboiler plus the Partial Condenser 

The optimal feed location is at the 9th or 10th stage, depending on how one drew everything… 

  



3)  Start by converting the mass flow given to amolar flow: 

𝑴𝑾̅̅ ̅̅ ̅̅ = 𝒚𝒂𝒊𝒓 ∗  𝑴𝑾𝒂𝒊𝒓 + 𝒚𝒁 ∗ 𝑴𝑾𝒁 = 𝟎. 𝟗𝟓 ∗ 𝟐𝟖. 𝟗 + 𝟎. 𝟎𝟓 ∗ 𝟏𝟓 = 𝟐𝟖. 𝟐 
𝒍𝒃𝒎
𝒍𝒃 𝒎𝒐𝒍

 

Moles entering : 

5000 𝑙𝑏𝑚 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
∗  

𝑙𝑏 𝑚𝑜𝑙

28.2 𝑙𝑏𝑚
= 177.3 

𝑙𝑏 𝑚𝑜𝑙 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
  

Moles Air: 

177.3 
𝑙𝑏 𝑚𝑜𝑙 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
∗ 0.95 = 168.4 

𝑙𝑏 𝑚𝑜𝑙 𝑎𝑖𝑟

ℎ𝑟
 

Moles Zapple®: 

177.3 
𝑙𝑏 𝑚𝑜𝑙 𝑡𝑜𝑡𝑎𝑙

ℎ𝑟
∗ 0.05 = 8.9 

𝑙𝑏 𝑚𝑜𝑙 𝑍𝑎𝑝𝑝𝑙𝑒 𝑅

ℎ𝑟
 

Problem states that 90% of the Zapple® will be removed from the gas stream: 

 Moles Zapple® in the gas stream at the top, a: = 0.1 * 8.9 = 0.89 

Moles Zapple® in the liquid stream at the bottom, b: = 0.9 * 8.9 = 8.0 

Mole fraction of Zapple® in the gas stream at the top: 

𝑦𝑎 =
0.89

168.4 + 0.89
= 0.0053 

 



Because the problem statement indicates that the operating line can be considered linear we can 

assume that for minimum liquid flow the mole fraction of Zapple® in the exiting liquid is in equilibrium 

with the entering gas: 

From problem statement: 

𝒚 = 𝟎. 𝟕 𝒙 

𝒙𝒃 = 
𝒚𝒃
𝟎. 𝟕

=
𝟎. 𝟎𝟓

𝟎. 𝟕
= 𝟎. 𝟎𝟕𝟏𝟒 

The mole fraction in the exiting liquid is: 

𝒙𝒃 = 
𝑳𝒁,𝒃

𝑳𝑪,𝒎𝒊𝒏 + 𝑳𝒁,𝒃
=

𝟖. 𝟎

𝑳𝑪 + 𝟖. 𝟎
= 𝟎. 𝟎𝟕𝟏𝟒 

The minimum liquid flow can be solved as: 

𝑳𝑪,𝒎𝒊𝒏 = 𝟏𝟎𝟒. 𝟎 
𝒍𝒃 𝒎𝒐𝒍 𝒘𝒂𝒕𝒆𝒓

𝒉𝒓
  

As per the problem statement, we will be using 1.5 times the minimum flow: 

𝑳𝑪 = 𝟏. 𝟓 ∗ 𝑳𝑪,𝒎𝒊𝒏 = 𝟏. 𝟓 ∗ 𝟏𝟎𝟒. 𝟎 = 𝟏𝟓𝟔 
𝒍𝒃 𝒎𝒐𝒍 𝒘𝒂𝒕𝒆𝒓

𝒉𝒓
  

Now we can calculate the mole fraction in the exiting liquid: 

𝒙𝒃 = 
𝑳𝒁,𝒃

𝑳𝑪 + 𝑳𝒁,𝒃
=

𝟖. 𝟎

𝟏𝟓𝟔 + 𝟖. 𝟎
= 𝟎. 𝟎𝟒𝟗 

 



a. Now we use the flooding correlation given: 

∆𝑃𝑓𝑙𝑜𝑜𝑑 = 0.115 ∗  𝐹𝑃
 0.7 

 

From the data table given we see that for 1 ½ “ Plastic Pall Rings  Fp = 40 and fp = 1.18 

∆𝑃𝑓𝑙𝑜𝑜𝑑 = 0.115 ∗  40
0.7 = 1.52 

" 𝐻20

𝑓𝑡
 

 

We are instructed to work at 50% of the flooding pressure drop, therefore we will use 

0.75 “ water per foot of packing. 

 

To use the attached chart we must calculate 
𝑮𝒙

𝑮𝒚
√
𝝆𝒚

𝝆𝒙
 

Although we do not know the cross-sectional are required to calculate Gx or Gy, the ratio 

of them is the same as the ratio of the mass flows of the liquid and vapor. 

Mass flow of vapor: 

 At bottom = 5000 lb/hr 

At top = 168.4 lbmol air/hr * 28.9 lb / lbmol + 0.89 lbmol Z/hr * 15 ln /lbmol = 

4880 lb/hr 

Average = 4940 lb /hr 

  Mass flow of liquid: 

   At top = 156 lbmol water/hr * 18 lb/lbmol = 2808 lb/hr 

At bottom = 156 lbmol water/hr * 18 lb/lbmol + 8.0 lbmol/hr * 15 ln/lbmol = 

2928 lb/hr 

Average = 2868 lb/hr 

𝑮𝒙
𝑮𝒚
=
𝟐𝟖𝟔𝟖

𝟒𝟗𝟒𝟎
= 𝟎. 𝟓𝟖𝟏 

Note: if one had just used the values at the bottom of the tow the ratio would be 0.562, 

very similar… 

The density of the liquid can be approximated as the density of water, 

𝝆𝒙 = 𝟔𝟐. 𝟒 𝒍𝒃/𝒇𝒕
𝟑 

  The density of the vapor can obtained using the ideal gas law: 

𝝆𝒚 =
𝑴𝑾̅̅ ̅̅ ̅̅ 𝑷

𝑹𝑻
=

𝟐𝟖. 𝟐 
𝒍𝒃

𝒍𝒃𝒎𝒐𝒍
 𝟏 𝒂𝒕𝒎

𝟎. 𝟕𝟑𝟎𝟐𝟒 
𝒇𝒕𝟑𝒂𝒕𝒎
𝑹 𝒍𝒃𝒎𝒐𝒍

 𝟓𝟐𝟕. 𝟔𝟕 𝑹

= 𝟎. 𝟎𝟕𝟑𝟏𝟖 
𝒍𝒃

𝒇𝒕𝟑
 

 



Now: 

𝑮𝒙
𝑮𝒚
√
𝝆𝒚

𝝆𝒙
= 𝟎. 𝟓𝟖𝟏√

𝟎. 𝟎𝟕𝟑𝟏𝟖

𝟔𝟐. 𝟒
= 𝟎. 𝟎𝟏𝟗𝟗 

 

From graph we can read (by interpolating between the lines from 0.5 and 1.0 “water/ft) that 

𝑪𝒔𝑭𝒑
𝟎.𝟓𝝂𝟎.𝟎𝟓 = 𝟏. 𝟕 

𝑪𝒔𝟒𝟎𝒑
𝟎.𝟓𝟏𝟎.𝟎𝟓 = 𝟏𝟕 

𝑪𝒔 = 𝟎. 𝟐𝟔𝟗 

By definition: 

𝑪𝒔 = 𝒖𝟎√
𝝆𝒚

𝝆𝒙 − 𝝆𝒚
 

𝟎. 𝟐𝟔𝟗 = 𝒖𝟎√
𝟎. 𝟎𝟕𝟑𝟏𝟖

𝟔𝟐. 𝟒 −  𝟎. 𝟎𝟕𝟑𝟏𝟖
= 𝟎. 𝟎𝟑𝟐𝟑 𝒖𝟎 

𝒖𝟎 = 𝟕. 𝟖𝟓 𝒇𝒕/𝒔 



Calculate largest volumetric flow: 

𝟓𝟎𝟎𝟎 
𝒍𝒃

𝒉𝒓
∗  

𝒇𝒕𝟑

𝟎. 𝟎𝟕𝟑𝟏𝟖 𝒍𝒃
∗  

𝒉𝒓

𝟑𝟔𝟎𝟎 𝒔
= 𝟏𝟗. 𝟎 

𝒇𝒕𝟑

𝒔
 

The required area is: 

𝑨𝒓𝒆𝒂 =
𝒗𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄 𝒇𝒍𝒐𝒘

𝒍𝒊𝒏𝒆𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚
=
𝟏𝟗. 𝟎 

𝒇𝒕𝟑

𝒔
𝟕. 𝟖𝟓 𝒇𝒕/𝒔 

= 𝟐. 𝟒𝟐 𝒇𝒕𝟐 =
𝝅 𝑫𝟐

𝟒
 

𝑫 = 𝟏. 𝟕𝟓 𝒇𝒕 

b) Now that we have the cross-sectional area we can calculate Gx and Gy independently: 

𝑮𝒙 =
𝟐𝟖𝟔𝟖 

𝒍𝒃
𝒉𝒓

𝟐. 𝟒𝟐 𝒇𝒕𝟐
= 𝟏𝟏𝟖𝟓 

𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓
 

𝑮𝒚 =
𝟒𝟗𝟒𝟎 

𝒍𝒃
𝒉𝒓

𝟐. 𝟒𝟐 𝒇𝒕𝟐
= 𝟐𝟎𝟒𝟏 

𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓
 

 

We can now calculate the height of the transfer unit: 

𝑯𝒙 = 𝟎. 𝟗 𝒇𝒕 

(

 
 

𝑮𝒙
𝝁⁄

𝟏𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓
𝟎. 𝟖𝟗𝟏 𝒄𝑷
⁄

)

 
 

𝟎.𝟑

 (
𝑺𝒄
𝟑𝟖𝟏

)
𝟎.𝟓 𝟏

𝒇𝒑
 

𝑯𝒙 = 𝟎. 𝟗 𝒇𝒕 

(

 
 
𝟏𝟏𝟖𝟓 

𝒍𝒃
𝒇𝒕𝟐 𝒉𝒓

𝟎. 𝟖𝟗𝟏 𝒄𝑷
⁄

𝟏𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓
𝟎. 𝟖𝟗𝟏 𝒄𝑷
⁄

)

 
 

𝟎.𝟑

 (
𝟑𝟓𝟎

𝟑𝟖𝟏
)
𝟎.𝟓 𝟏

𝟏. 𝟏𝟖
= 𝟎. 𝟔𝟖 𝒇𝒕 

 

𝑯𝒚 = 𝟏. 𝟒 𝒇𝒕 (
𝑮𝒚

𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓

)

𝟎.𝟑

(

𝟏𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓

𝑮𝒙
)

𝟎.𝟒

 (
𝑺𝒄
𝟎. 𝟔𝟔

)
𝟎.𝟓 𝟏

𝒇𝒑
 

𝑯𝒚 = 𝟏. 𝟒 𝒇𝒕 (
𝟐𝟎𝟒𝟏

𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓

)

𝟎.𝟑

(

𝟏𝟓𝟎𝟎 
𝒍𝒃

𝒇𝒕𝟐 𝒉𝒓

𝟏𝟏𝟖𝟓
)

𝟎.𝟒

 (
𝟎. 𝟕𝟓

𝟎. 𝟔𝟔
)
𝟎.𝟓 𝟏

𝟏. 𝟏𝟖
= 𝟐. 𝟏𝟐 𝒇𝒕 

  



Now we can calculate height of overall transfer unit: 

𝑯𝑶𝒚 = 𝑯𝒚 +𝒎 
𝑽

𝑳
∗  𝑯𝒙 

From problem statement we know that y = 0.7 x and therefore m = 0.7 

For V/L we can use: 

𝑉
𝐿⁄ =  

𝑥𝑏 − 𝑥𝑎
𝑦𝑏 − 𝑦𝑎

= 
0.049 − 0

0.05 − 0.0053
= 1.10 

Had one used the molar flows at the bottom of the tower V/L = 1.08 would be obtained. 

Now: 

𝑯𝑶𝒚 = 𝟐. 𝟏𝟐 𝒇𝒕 + 𝟎. 𝟕 ∗ 𝟏. 𝟏𝟎 ∗  𝟎. 𝟔𝟖 𝒇𝒕 = 𝟐. 𝟔𝟒 𝒇𝒕 

Now we will calculate the number of transfer units: 

𝑵𝑶𝒚 =
𝒚𝒃 − 𝒚𝒂

(𝒚 − 𝒚∗)𝒍𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

𝑦𝑎 = 0.0053 

𝑦𝑏 = 0.05 

𝑦𝑎
∗ = 0.7 ∗ 𝑥𝑎 = 0.7 ∗ 0 = 0 

𝑦𝑏
∗ = 0.7 ∗  𝑥𝑏 = 0.7 ∗ 0.049 = 0.0343 

 

𝑦𝑏 − 𝑦𝑎 = 0.05 − 0.0053 = 0.0447 

𝑦𝑎 − 𝑦𝑎
∗ = 0.0053 − 0 = 0.0053 

𝑦𝑏 − 𝑦𝑏
∗ = 0.05 − 0.0343 = 0.0157 

 

(𝒚 − 𝒚∗)𝒍𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
(𝑦𝑎 − 𝑦𝑎

∗) − (𝑦𝑏 − 𝑦𝑏
∗)

ln
𝑦𝑎 − 𝑦𝑎

∗

𝑦𝑏 − 𝑦𝑏
∗

=
0.0053 − 0.0157

ln
0.0053
0.0157

=
−0.0104

−1.0860
= 0.00958 

 

𝑵𝑶𝒚 =
𝒚𝒃 − 𝒚𝒂

(𝒚 − 𝒚∗)𝒍𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=
𝟎. 𝟎𝟒𝟒𝟕

𝟎. 𝟎𝟎𝟗𝟓𝟖
= 𝟒. 𝟔𝟕 

 

The required height of the packing can be calculated as: 

𝒁𝒕 = 𝑯𝑶𝒚 ∗  𝑵𝑶𝒚 = 𝟐. 𝟔𝟒 𝒇𝒕 ∗  𝟒. 𝟔𝟕 = 𝟏𝟐. 𝟑 𝒇𝒕 



4)  

 
Reflux ratio is given as 1.5 

 

a)   𝑫 = 𝑭(
𝒙𝑭− 𝒙𝑩

𝒙𝑫− 𝒙𝑩
) = 𝟏𝟎𝟎 ∗ (

𝟎.𝟑−𝟎.𝟎𝟓

𝟎.𝟗𝟗𝟗−𝟎.𝟎𝟓
) = 𝟐𝟔. 𝟑𝟒 𝒎𝒐𝒍/𝒎𝒊𝒏 

 

𝑩 = 𝑭(
𝒙𝑫 − 𝒙𝑭
𝒙𝑫 − 𝒙𝑩

) = 𝟏𝟎𝟎 ∗ (
𝟎. 𝟗𝟗𝟗 − 𝟎. 𝟑

𝟎. 𝟗𝟗𝟗 − 𝟎. 𝟎𝟓
) = 𝟕𝟑. 𝟔𝟔 𝒎𝒐𝒍/𝒎𝒊𝒏 

 

 

b) and c) 

The R Operating line has the following equation: 

𝑦𝑛+1 =
𝑅

𝑅 + 1
 𝑥𝑛 + 

𝑥𝐷
𝑅 + 1

 

 

𝑦𝑛+1 =
1.5

1.5 + 1
 𝑥𝑛 + 

0.999

1.5 + 1
 

 

𝒚𝒏+𝟏 = 𝟎. 𝟔𝟎𝟎𝟎𝟎𝟎𝟎 𝒙𝒏 +  𝟎. 𝟑𝟗𝟗𝟔𝟎𝟎𝟎 
 

Use the Kremser Equation to determine the number of stages required to go from x = 0.9 to x 

= 0.999 

 

We need to determine the equation for the line which approximates the equilibrium curve in 

this region: 

 Line passes through the points (1,1) and (0.9000000, 0.9815065) 

 The slope will be (rise over run): 

𝑚 =
1 − 0.9815065

1 − 0.9000000
= 0.1849350 

 

 The intercept can be evaluated for the point (1,1) 

𝑦 = 0.1849350 𝑥 + 𝑏 

1 = 0.1849350 ∗ (1) + 𝑏 

𝑏 = 0.8150650 



 

𝒚 = 𝟎. 𝟏𝟖𝟒𝟗𝟑𝟓𝟎 𝒙 + 𝟎. 𝟖𝟏𝟓𝟎𝟔𝟓𝟎 Equilibrium Line 

  

 Data needed for Kremser Equation: 

  a evaluated at x = xD 

  b evaluated at x = 0.9 

At x = xD = 0.999 the value on the operating line is equal to xD= 0.999 

𝑦𝑎 = 𝟎. 𝟔𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝟎. 𝟗𝟗𝟗 +  𝟎. 𝟑𝟗𝟗𝟔𝟎𝟎 = 𝟎. 𝟗𝟗𝟗0000 

At x = 0.90 the value on the operating line is 

𝑦𝑏 = 𝟎. 𝟔𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝟎. 𝟗 +  𝟎. 𝟑𝟗𝟗𝟔𝟎𝟎 = 𝟎. 𝟗𝟑𝟗𝟔𝟎𝟎𝟎 

 

At x = xD = 0.999 the value on the equilibrium line is 

𝒚𝒂
∗ = 𝟎. 𝟏𝟖𝟒𝟗𝟑𝟓𝟎 ∗ 𝟎. 𝟗𝟗𝟗 + 𝟎. 𝟖𝟏𝟓𝟎𝟔𝟓𝟎 = 𝟎. 𝟗𝟗𝟗𝟖𝟏𝟓𝟏 

At x = 0.90 the value on the operating line is (this value is also known from the problem statement) 

𝒚𝒃
∗ = 𝟎. 𝟏𝟖𝟒𝟗𝟑𝟓𝟎 ∗ 𝟎. 𝟗 + 𝟎. 𝟖𝟏𝟓𝟎𝟔𝟓𝟎 = 𝟎. 𝟗𝟖𝟏𝟓𝟎𝟔𝟓 

 

The number of stages required to get from x = 0.9 to x = 0.999 is: 

 

𝑵 =
𝒍𝒏[(𝒚𝒃 − 𝒚𝒃

∗ ) (𝒚𝒂 − 𝒚𝒂
∗⁄ )]

𝒍𝒏 [(𝒚𝒃 − 𝒚𝒂) (𝒚𝒃
∗ − 𝒚𝒂

∗ )⁄ ]
 

 

𝒚𝒃 − 𝒚𝒃
∗ = −𝟎.𝟎𝟒𝟏𝟗𝟎𝟔𝟓 

𝒚𝒂 − 𝒚𝒂
∗ = −𝟎.𝟎𝟎𝟎𝟖𝟏𝟓𝟏 

𝒚𝒃 − 𝒚𝒂 = −𝟎.𝟎𝟓𝟗𝟒𝟎𝟎𝟎 

𝒚𝒃
∗ − 𝒚𝒂

∗ = −𝟎.𝟎𝟏𝟖𝟑𝟎𝟖𝟔 

 

(𝒚𝒃 − 𝒚𝒃
∗ ) (𝒚𝒂 − 𝒚𝒂

∗⁄ ) =  −𝟎. 𝟎𝟒𝟏𝟗𝟎𝟔𝟓 −𝟎. 𝟎𝟎𝟎𝟖𝟏𝟓𝟏⁄ = 𝟓𝟏. 𝟒𝟏𝟐𝟕𝟏 

 

(𝒚𝒃 − 𝒚𝒂) (𝒚𝒃
∗ − 𝒚𝒂

∗ )⁄ = −𝟎. 𝟎𝟓𝟗𝟒𝟎𝟎𝟎 −𝟎. 𝟎𝟏𝟖𝟑𝟎𝟖𝟔⁄ = 𝟑. 𝟐𝟒𝟒𝟑𝟕𝟕 



𝑵 =
𝒍𝒏[(𝒚𝒃 − 𝒚𝒃

∗ ) (𝒚𝒂 − 𝒚𝒂
∗⁄ )]

𝒍𝒏 [(𝒚𝒃 − 𝒚𝒂) (𝒚𝒃
∗ − 𝒚𝒂

∗ )⁄ ]
=
𝒍𝒏[𝟓𝟏. 𝟒𝟏𝟐𝟕𝟏]

𝒍𝒏 [𝟑. 𝟐𝟒𝟒𝟑𝟕𝟕]
=
𝟑. 𝟗𝟑𝟗𝟖𝟖𝟓

𝟏. 𝟏𝟕𝟔𝟗𝟐𝟑
= 𝟑. 𝟑𝟓 𝒔𝒕𝒂𝒈𝒆𝒔 

 

Round up to 4 stages 

Now on McCabe-Thiele diagram draw R operating line from (xD, xD) to the intercept calculated earlier, 

0.4 (we don’t need all of the significant digits used earlier. 

Then draw the S operating line from (xB, xB) to the intersection of the equilibrium curve and the feed 

line. Because the feed entered as a saturated liquid the feed line is a vertical line at x = 0. 

 

The steps can then be drawn in: 



 

The required number of steps is 4 + 6 + Reboiler. 

Therefore 10 stages plus reboiler.  

The feed enters on stage 4 + 4 = Stage 8 

 


