CE 407 Final Exam Solution 12/12/19

1) First we plot L_{N} ' and connect it to the pure solvent to locate L_{N} as having $x_{C}=0.1$

Next we draw the line from $\mathrm{V}_{\mathrm{N}+1}$ through L_{N} and extend it out past the graph. By extending all of the tie lines between L_{0} and L_{N} to this line we can locate $\Delta_{\text {min }}$.

Because the topmost tie line extended furthest out, that line is also the line from $\Delta_{\text {min }}$ to L_{0}. Where it extends to the other side of the phase boundary is $\mathrm{V}_{1 \text { min. }}$.

Problem 01

Now we will add the lines L_{0} to $\mathbf{V}_{\mathbf{N}+1}$ and $\mathbf{L}_{\mathbf{N}}$ to $\mathbf{V}_{\mathbf{1} \text { min. }}$. The intersection, \mathbf{M}, is at $\mathbf{x}_{\mathbf{C}}=0.20$ and $\mathbf{V}_{\mathbf{1}}$ min is at $\mathbf{x}_{\mathbf{C}}=$ 0.42

Problem 01

We now want to determine the minimum flow rate of solvent solution:

$$
\begin{aligned}
& \frac{V_{N+1 \min }}{L_{0}}=\frac{x_{0}-x_{M}}{x_{M}-y_{N+1}}=\frac{0.24-0.20}{0.20-0.04}=0.25 \\
& V_{N+1 \text { min }}=L_{0} * 0.25=500 * 0.25=125 \frac{\mathrm{~kg}}{\mathrm{hr}}
\end{aligned}
$$

Because we are using 1.5 times the minimum flow our solvent solution flow will be

$$
V_{N+1}=1.5 * 125=187.5 \frac{\mathrm{~kg}}{\mathrm{hr}}
$$

This is the answer for part b.

Now we will prepare the next graph to determine points on the operating line:
First determine the new mixing point, \mathbf{M} :

$$
x_{M}=\frac{F * x_{F}+S * y_{S}}{F+S}=\frac{500(0.24)+187.5(0.04)}{500+187.5}=0.185
$$

$$
x_{M, B}=\frac{F * x_{F, B}+S * y_{S, B}}{F+S}=\frac{500(0.0)+187.5(0.90)}{500+187.5}=0.245
$$

Plot this point on the line from \mathbf{L}_{0} to $\mathbf{V}_{\mathrm{N}+1}$ and extend line from $\mathbf{L N}$ through \mathbf{M} until it contacts the solvent rich side of the phase boundary. The point $\mathbf{V}_{\mathbf{1}}$ is at $\mathbf{x}_{\mathbf{c}}=0.33$.

Now draw lines $\mathbf{L}_{\mathbf{N}}$ to $\mathbf{V}_{\mathbf{N}+1}$ and \mathbf{V}_{1} to $\mathbf{L}_{\mathbf{0}}$, extend to outside the graph to locate Δ. Then draw a series of lines to locate points for the operatine lines. (The $\mathbf{x}_{\mathbf{c}}$ value on the raffinate side of the phase boundary is \mathbf{x} and the $\mathbf{x}_{\mathbf{c}}$ value on the extract side of the phase boundary is \mathbf{y}.)

Operating Line Points	
\mathbf{x}	\mathbf{y}
0.26	0.33
0.24	0.30
0.215	0.26
0.18	0.20
0.16	0.16
0.125	0.10
0.10	0.06

The points for the equilibrium curve by taking $\mathbf{x}_{\mathbf{c}}$ for the raffinate as \mathbf{x} and $\mathbf{x}_{\mathbf{c}}$ for the extract as \mathbf{y} (from the equilibirum data provided) for equilibrium curve points.

Equilibrium CurvePoints	
\mathbf{x}	\mathbf{y}
0.30	0.42
0.24	0.39
0.18	0.35
0.12	0.30
0.08	0.26
0.04	0.29

2 stages are required.

McCabe-Thiele

2) The first step is to convert the mass flow given into molar flows:

$$
\begin{gathered}
1000 \mathrm{~kg} \mathrm{total} / \mathrm{hr} * 0.45 \mathrm{kgEB} / \mathrm{kg} \mathrm{total} * \frac{\mathrm{~mol} \mathrm{~EB}}{106.17 \mathrm{gEB}} * \frac{1000 \mathrm{~g}}{\mathrm{~kg}}=4238.5 \mathrm{~mol} \mathrm{~EB} / \mathrm{hr} \\
1000 \mathrm{~kg} \mathrm{total} / \mathrm{hr}^{*} * 0.55 \mathrm{kgT} / \mathrm{kg} \text { total } * \frac{\mathrm{~mol} \mathrm{~T}}{92.14 \mathrm{~g} \mathrm{~T}} * \frac{1000 \mathrm{~g}}{\mathrm{~kg}}=5969.2 \mathrm{~mol} \mathrm{~T} / \mathrm{hr} \\
x_{F}=\frac{5969.2 \mathrm{~mol} \mathrm{~T}}{5969.2 \mathrm{~mol} \mathrm{~T}+4238.5 \mathrm{~mol} \mathrm{~EB}}=0.58
\end{gathered}
$$

1 hour basis

The next step is to determine the minimum reflux ratio:

By drawing a line from $\mathbf{x}_{\boldsymbol{D}}$ to the intersection of the feed line and the equilibrium curve, the intercept can be read:

$$
\frac{x_{D}}{R_{\min }+1}=0.4
$$

This can be solved for $\mathbf{x}_{\mathrm{D}}=0.98$ to give $\boldsymbol{R}_{\min }=\mathbf{1 . 4 5}$
Problem statement says to use $\boldsymbol{R}=2 * \boldsymbol{R}_{\min }=2 * 1.45=2.90$
The new intercept is:

$$
\frac{x_{D}}{R+1}=\frac{0.98}{2.90+1}=0.251
$$

The R operating line can be drawn from the intercept to ($\mathbf{x}_{\mathbf{D}}, \mathbf{x}_{\mathbf{D}}$) and the S operating line can be drawn from (x_{B}, x_{B}) to the intersection of the feed line and the R operating line. The effective equilibrium curve
is then estimated by marking points 75% of the way from the appropriate operating line and the equilibrium curve.

The McCabe-Thiele steps are drawn. Note that the first step is not a stage but represents the Partial Condenser.

There are 17 stages plus the Reboiler plus the Partial Condenser
The optimal feed location is at the $9^{\text {th }}$ or $10^{\text {th }}$ stage, depending on how one drew everything...
3) Start by converting the mass flow given to amolar flow:

$$
\overline{M W}=y_{a i r} * M W_{a i r}+y_{Z} * M W_{Z}=0.95 * 28.9+0.05 * 15=28.2 \frac{l b_{m}}{l b \mathrm{~mol}}
$$

Moles entering :

$$
\frac{5000 l b_{m} \text { total }}{h r} * \frac{l b \mathrm{~mol}}{28.2 l b_{m}}=177.3 \frac{l \mathrm{~b} \mathrm{~mol} \mathrm{total}}{h r}
$$

Moles Air:

$$
177.3 \frac{\mathrm{lb} \mathrm{~mol} \text { total }}{\mathrm{hr}} * 0.95=168.4 \frac{\mathrm{lb} \mathrm{~mol} \mathrm{air}}{\mathrm{hr}}
$$

Moles Zapple ${ }^{\text {® }}$

$$
177.3 \frac{\mathrm{lb} \mathrm{~mol} \mathrm{total}}{\mathrm{hr}} * 0.05=8.9 \frac{\mathrm{lb} \mathrm{~mol} \mathrm{Zapple}{ }^{R}}{\mathrm{hr}}
$$

Problem states that 90% of the Zapple ${ }^{\circledR}$ will be removed from the gas stream:
Moles Zapple ${ }^{\circledR}$ in the gas stream at the top, a: $=0.1 * 8.9=0.89$
Moles Zapple ${ }^{\circledR}$ in the liquid stream at the bottom, $\mathrm{b}:=0.9$ * $8.9=8.0$
Mole fraction of Zapple ${ }^{\circledR}$ in the gas stream at the top:

$$
y_{a}=\frac{0.89}{168.4+0.89}=0.0053
$$

Because the problem statement indicates that the operating line can be considered linear we can assume that for minimum liquid flow the mole fraction of Zapple ${ }^{\circledR}$ in the exiting liquid is in equilibrium with the entering gas:

From problem statement:

$$
\begin{gathered}
y=0.7 x \\
x_{b}=\frac{y_{b}}{0.7}=\frac{0.05}{0.7}=0.0714
\end{gathered}
$$

The mole fraction in the exiting liquid is:

$$
x_{b}=\frac{L_{Z, b}}{L_{C, \text { min }}+L_{Z, b}}=\frac{8.0}{L_{C}+8.0}=0.0714
$$

The minimum liquid flow can be solved as:

$$
L_{C, \text { min }}=104.0 \frac{\mathrm{lb} \mathrm{~mol} \text { water }}{h r}
$$

As per the problem statement, we will be using 1.5 times the minimum flow:

$$
L_{C}=1.5 * L_{C, \min }=1.5 * 104.0=156 \frac{\mathrm{lb} \mathrm{~mol} \text { water }}{h r}
$$

Now we can calculate the mole fraction in the exiting liquid:

$$
x_{b}=\frac{L_{Z, b}}{L_{C}+L_{Z, b}}=\frac{8.0}{156+8.0}=0.049
$$

a. Now we use the flooding correlation given:

$$
\Delta P_{\text {flood }}=0.115 * F_{P}^{0.7}
$$

From the data table given we see that for $1 \frac{1}{2}$ " Plastic Pall Rings $\mathbf{F}_{\mathbf{p}}=40$ and $\mathbf{f}_{\mathbf{p}}=1.18$

$$
\Delta P_{\text {flood }}=0.115 * 40^{0.7}=1.52 \frac{" H 20}{f t}
$$

We are instructed to work at 50\% of the flooding pressure drop, therefore we will use 0.75 " water per foot of packing.

To use the attached chart we must calculate $\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}$
Although we do not know the cross-sectional are required to calculate \mathbf{G}_{x} or \mathbf{G}_{y}, the ratio of them is the same as the ratio of the mass flows of the liquid and vapor.

Mass flow of vapor:

$$
\begin{aligned}
& \text { At bottom }=5000 \mathrm{lb} / \mathrm{hr} \\
& \text { At top }=168.4 \mathrm{lbmol} \text { air } / \mathrm{hr} * 28.9 \mathrm{lb} / \mathrm{lbmol}+0.89 \mathrm{lbmol} \mathrm{Z} / \mathrm{hr} * 15 \mathrm{ln} / \mathrm{lbmol}= \\
& 4880 \mathrm{lb} / \mathrm{hr} \\
& \text { Average }=4940 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

Mass flow of liquid:
At top $=156 \mathrm{lbmol}$ water $/ \mathrm{hr} * 18 \mathrm{lb} / \mathrm{lbmol}=2808 \mathrm{lb} / \mathrm{hr}$
At bottom = 156 lbmol water $/ \mathrm{hr} * 18 \mathrm{lb} / \mathrm{lbmol}+8.0 \mathrm{lbmol} / \mathrm{hr} * 15 \mathrm{ln} / \mathrm{lbmol}=$ $2928 \mathrm{lb} / \mathrm{hr}$

Average $=2868 \mathrm{lb} / \mathrm{hr}$

$$
\frac{G_{x}}{G_{y}}=\frac{2868}{4940}=0.581
$$

Note: if one had just used the values at the bottom of the tow the ratio would be 0.562 , very similar...

The density of the liquid can be approximated as the density of water,

$$
\rho_{x}=62.4 l b / f t^{3}
$$

The density of the vapor can obtained using the ideal gas law:

$$
\rho_{y}=\frac{\overline{M W} P}{R T}=\frac{28.2 \frac{\mathrm{lb}}{\overline{l b m o l}} 1 \mathrm{~atm}}{0.73024 \frac{\mathrm{ft}^{3} \mathrm{~atm}}{R l \mathrm{lbmol}} 527.67 \mathrm{R}}=0.07318 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

Now:

$$
\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}=0.581 \sqrt{\frac{0.07318}{62.4}}=0.0199
$$

$$
\frac{G_{x}}{G_{y}} \sqrt{\frac{\rho_{y}}{\rho_{x}}}
$$

From graph we can read (by interpolating between the lines from 0.5 and 1.0 "water/ft) that

$$
\begin{gathered}
C_{s} F_{p}^{0.5} v^{0.05}=1.7 \\
C_{s} 40_{p}^{0.5} 1^{0.05}=17 \\
C_{s}=0.269
\end{gathered}
$$

By definition:

$$
\begin{gathered}
C_{s}=u_{0} \sqrt{\frac{\rho_{y}}{\rho_{x}-\rho_{y}}} \\
0.269=u_{0} \sqrt{\frac{0.07318}{62.4-0.07318}}=0.0323 u_{0} \\
u_{0}=7.85 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

Calculate largest volumetric flow:

$$
5000 \frac{l b}{h r} * \frac{f t^{3}}{0.07318 l b} * \frac{h r}{3600 s}=19.0 \frac{f t^{3}}{s}
$$

The required area is:

$$
\begin{gathered}
\text { Area }=\frac{\text { volumetric flow }}{\text { linear velocity }}=\frac{19.0 \frac{f t^{3}}{s}}{7.85 \mathrm{ft} / \mathrm{s}}=2.42 \mathrm{ft}^{2}=\frac{\pi D^{2}}{4} \\
D=1.75 \mathrm{ft}
\end{gathered}
$$

b) Now that we have the cross-sectional area we can calculate $\mathbf{G}_{\mathbf{x}}$ and $\mathbf{G}_{\mathbf{y}}$ independently:

$$
\begin{aligned}
G_{x} & =\frac{2868 \frac{l b}{h r}}{2.42 f t^{2}}=1185 \frac{l b}{f t^{2} h r} \\
G_{y} & =\frac{4940 \frac{l b}{h r}}{2.42 f t^{2}}=2041 \frac{l b}{f t^{2} h r}
\end{aligned}
$$

We can now calculate the height of the transfer unit:

$$
\begin{gathered}
H_{x}=0.9 f t\left(\frac{G_{x} / \mu}{1500 \frac{l b}{f t^{2} h r} /{ }_{0.891}(P)}\right)^{0.3}\left(\frac{S_{c}}{381}\right)^{0.5} \frac{1}{f_{p}} \\
H_{x}=0.9 f t\left(\frac{1185 \frac{l b}{f t^{2} h r} /{ }_{0.891 c P}^{0.3}}{1500 \frac{l b}{f t^{2} h r} / 0.891 c P}\right)^{\left(\frac{350}{381}\right)^{0.5} \frac{1}{1.18}=0.68 f t} \\
H_{y}=1.4 f t\left(\frac{G_{y}}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{G_{x}}\right)^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}} \\
H_{y}=1.4 f t\left(\frac{2041}{500 \frac{l b}{f t^{2} h r}}\right)^{0.3}\left(\frac{1500 \frac{l b}{f t^{2} h r}}{1185}\right)^{0.4}\left(\frac{0.75}{0.66}\right)^{0.5} \frac{1}{1.18}=2.12 f t
\end{gathered}
$$

Now we can calculate height of overall transfer unit:

$$
H_{o y}=H_{y}+m \frac{V}{L} * H_{x}
$$

From problem statement we know that $\mathrm{y}=0.7 \mathrm{x}$ and therefore $\mathrm{m}=0.7$
For V/L we can use:

$$
V /_{L}=\frac{x_{b}-x_{a}}{y_{b}-y_{a}}=\frac{0.049-0}{0.05-0.0053}=1.10
$$

Had one used the molar flows at the bottom of the tower $\mathrm{V} / \mathrm{L}=1.08$ would be obtained.
Now:

$$
H_{o y}=2.12 f t+0.7 * 1.10 * 0.68 f t=2.64 f t
$$

Now we will calculate the number of transfer units:

$$
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}}
$$

$y_{a}=0.0053$
$y_{b}=0.05$
$y_{a}^{*}=0.7 * x_{a}=0.7 * 0=0$
$y_{b}^{*}=0.7 * x_{b}=0.7 * 0.049=0.0343$
$y_{b}-y_{a}=0.05-0.0053=0.0447$
$y_{a}-y_{a}^{*}=0.0053-0=0.0053$
$y_{b}-y_{b}^{*}=0.05-0.0343=0.0157$

$$
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}}=\frac{0.0447}{0.00958}=4.67
$$

The required height of the packing can be calculated as:

$$
Z_{t}=H_{o y} * N_{o y}=2.64 \mathrm{ft} * 4.67=12.3 \mathrm{ft}
$$

4)

1 minute basis

Reflux ratio is given as 1.5
a)

$$
\begin{array}{r}
D=F\left(\frac{x_{F}-x_{B}}{x_{D}-x_{B}}\right)=100 *\left(\frac{0.3-0.05}{0.999-0.05}\right)=26.34 \mathrm{~mol} / \mathrm{min} \\
B=F\left(\frac{x_{D}-x_{F}}{x_{D}-x_{B}}\right)=100 *\left(\frac{0.999-0.3}{0.999-0.05}\right)=73.66 \mathrm{~mol} / \mathrm{min}
\end{array}
$$

b) and c)

The R Operating line has the following equation:

$$
\begin{gathered}
y_{n+1}=\frac{R}{R+1} x_{n}+\frac{x_{D}}{R+1} \\
y_{n+1}=\frac{1.5}{1.5+1} x_{n}+\frac{0.999}{1.5+1} \\
\boldsymbol{y}_{\boldsymbol{n}+\mathbf{1}}=\mathbf{0 . 6 0 0 0 0 0 0} \boldsymbol{x}_{\boldsymbol{n}}+\mathbf{0 . 3 9 9 6 0 0 0}
\end{gathered}
$$

Use the Kremser Equation to determine the number of stages required to go from $\mathbf{x}=0.9$ to \mathbf{x} $=0.999$

We need to determine the equation for the line which approximates the equilibrium curve in this region:

Line passes through the points $(1,1)$ and $(0.9000000,0.9815065)$
The slope will be (rise over run):

$$
m=\frac{1-0.9815065}{1-0.9000000}=0.1849350
$$

The intercept can be evaluated for the point (1,1)

$$
\begin{gathered}
y=0.1849350 x+b \\
1=0.1849350 *(1)+b \\
b=0.8150650
\end{gathered}
$$

$$
y=0.1849350 x+0.8150650
$$

Equilibrium Line

Data needed for Kremser Equation:

$$
\begin{aligned}
& \text { a evaluated at } x=x_{D} \\
& \text { b evaluated at } x=0.9
\end{aligned}
$$

At $x=x_{D}=0.999$ the value on the operating line is equal to $x_{D}=0.999$

$$
y_{a}=\mathbf{0 . 6 0 0 0 0 0 0} * \mathbf{0 . 9 9 9}+\mathbf{0 . 3 9 9 6 0 0}=\mathbf{0 . 9 9 9 0 0 0 0}
$$

At $x=0.90$ the value on the operating line is

$$
y_{b}=\mathbf{0 . 6 0 0 0 0 0 0} * \mathbf{0 . 9}+\mathbf{0 . 3 9 9 6 0 0}=\mathbf{0 . 9 3 9 6 0 0 0}
$$

At $x=x_{D}=0.999$ the value on the equilibrium line is

$$
y_{a}^{*}=0.1849350 * 0.999+0.8150650=0.9998151
$$

At $x=0.90$ the value on the operating line is (this value is also known from the problem statement)

$$
y_{b}^{*}=0.1849350 * 0.9+0.8150650=0.9815065
$$

The number of stages required to get from $\mathrm{x}=0.9$ to $\mathrm{x}=0.999$ is:

$$
N=\frac{\ln \left[\left(y_{b}-y_{b}^{*}\right) /\left(y_{a}-y_{a}^{*}\right)\right]}{\ln \left[\left(y_{b}-y_{a}\right) /\left(y_{b}^{*}-y_{a}^{*}\right)\right]}
$$

$$
\begin{aligned}
& y_{b}-y_{b}^{*}=-0.0419065 \\
& y_{a}-y_{a}^{*}=-0.0008151 \\
& y_{b}-y_{a}=-0.0594000 \\
& y_{b}^{*}-y_{a}^{*}=-0.0183086
\end{aligned}
$$

$$
\left(y_{b}-y_{b}^{*}\right) /\left(y_{a}-y_{a}^{*}\right)=-0.0419065 /{ }_{-0.0008151}=51.41271
$$

$$
\left(y_{b}-y_{a}\right) /\left(y_{b}^{*}-y_{a}^{*}\right)=-0.0594000 /{ }_{-0.0183086}=3.244377
$$

$$
N=\frac{\ln \left[\left(y_{b}-y_{b}^{*}\right) /\left(y_{a}-y_{a}^{*}\right)\right]}{\ln \left[\left(y_{b}-y_{a}\right) /\left(y_{b}^{*}-y_{a}^{*}\right)\right]}=\frac{\ln [51.41271]}{\ln [3.244377]}=\frac{3.939885}{1.176923}=3.35 \text { stages }
$$

Round up to 4 stages

Now on McCabe-Thiele diagram draw R operating line from ($\mathbf{x}_{\mathrm{D}}, \mathbf{x}_{\mathrm{D}}$) to the intercept calculated earlier, 0.4 (we don't need all of the significant digits used earlier.

Then draw the S operating line from $\left(\mathbf{x}_{\boldsymbol{B}}, \mathbf{x}_{\boldsymbol{B}}\right)$ to the intersection of the equilibrium curve and the feed line. Because the feed entered as a saturated liquid the feed line is a vertical line at $x=0$.

The steps can then be drawn in:

The required number of steps is $4+6+$ Reboiler.
Therefore 10 stages plus reboiler.
The feed enters on stage $4+4=$ Stage 8

